Published in

Oxford University Press, Stem Cells, 1(31), p. 71-82, 2012

DOI: 10.1002/stem.1272

Links

Tools

Export citation

Search in Google Scholar

Gata4 Blocks Somatic Cell Reprogramming By Directly Repressing Nanog

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells by ectopic expression of the four factors Oct4, Klf4, Sox2, and Myc. Here, we investigated the role of Gata4 in the reprogramming process and present evidence for a negative role of this family of transcription factors in the induction of pluripotency. Coexpression of Gata4 with Oct4, Klf4, and Sox2 with or without Myc in mouse embryonic fibroblasts greatly impaired reprogramming and endogenous Nanog expression. The lack of Nanog upregulation was associated with a blockade in the transition from the initiation phase of reprogramming to the full pluripotent state characteristic of iPS cells. Addition of Nanog to the reprogramming cocktail blocked the deleterious effects observed with Gata4 expression. Downregulation of endogenous Gata4 by short hairpin RNAs during reprogramming both accelerated and increased the efficiency of the process and augmented the mRNA levels of endogenous Nanog. Using comparative genomics, we identified a consensus binding site for Gata factors in an evolutionary conserved region located 9 kb upstream of the Nanog gene. Using chromatin immunoprecipitation, gel retardation, and luciferase assays, we found that Gata4 bound to this region and inhibited Nanog transcription in mouse embryonic stem cells. Overall, our results describe for first time the negative effect of Gata4 in the reprogramming of somatic cells and highlight the role of Gata factors in the transcriptional networks that control cell lineage choices in the early embryo.