Published in

Springer Verlag, Materials and Structures, 1-2(49), p. 225-239

DOI: 10.1617/s11527-014-0490-5

Links

Tools

Export citation

Search in Google Scholar

Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions

Journal article published in 2014 by Didier Snoeck ORCID, Bavo Priem, Peter Dubruel, Nele De Belie
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Energy efficiency in buildings has been a hot topic in recent years and the demand for alternatives regarding heat storage and thermal insulation is high. Materials with a large thermal mass like concrete can be optimized in terms of heat capacity. Useful for this purpose are Phase-Change Materials (PCMs), which show a high heat of fusion with a melting point within the ambient temperature range. In this paper, the effect of encapsulated PCMs on the thermal behavior and setting process of mortar at early age, and on the strength and thermal behavior of hardened mortar were studied. Such hardened PCM-mortar warms up more gradually and expands the thermal comfort in buildings. PCMs delay the setting process and cause a shift of the corresponding heat of hydration peak and reduce the strength. However, the strength remains high enough for many applications. A possible application was studied, related to thermal cracking of insulated concrete sandwich panels, where the encapsulated PCMs show an influence on the thermal properties in a positive way as they reduce strains. PCMs are innovative and promising materials to use in future applications of concrete structures to promote thermal comfort and to reduce thermal cracking.