Published in

American Geophysical Union, Geophysical Research Letters, 5(35), 2008

DOI: 10.1029/2007gl032901

Links

Tools

Export citation

Search in Google Scholar

Modelling influence of North Atlantic multidecadal warmth on the Indian summer rainfall

Journal article published in 2008 by Shuanglin Li, Judith Perlwitz, Xiaowei Quan, Martin P. Hoerling
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Ensemble experiments with an atmospheric general circulation model reveal that a positive (warm) ocean phase of the Atlantic Multidecadal Oscillation (AMO) increases Indian summer rainfall. The intensification is driven by extratropical North Atlantic warmth, with some cancellation associated with monsoon weakening in response to tropical North Atlantic warmth. Mechanistically, warm extratropical North Atlantic SSTs increase local rainfall, inducing an arching extratropical wavetrain response. The latter leads to intensified northern subsidence of monsoon mean meridional streamflow as well as widespread low surface pressure over North Africa, the Middle East and the western Indian Ocean contributing to a strengthened Indian monsoon trough and increased monsoon rainfall. Warm tropical North Atlantic SSTs primarily increase local tropical Atlantic rainfall that induces a tropically-confined response consisting of low level easterly wind anomalies over the Indian Ocean and dynamically induced subsident drying over India.