Published in

American Society for Microbiology, Journal of Virology, 16(86), p. 8499-8506, 2012

DOI: 10.1128/jvi.00424-12

Links

Tools

Export citation

Search in Google Scholar

Vpu-Deficient HIV Strains Stimulate Innate Immune Signaling Responses in Target Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Acute virus infection induces a cell-intrinsic innate immune response comprising our first line of immunity to limit virus replication and spread, but viruses have developed strategies to overcome these defenses. HIV-1 is a major public health problem; however, the virus-host interactions that regulate innate immune defenses against HIV-1 are not fully defined. We have recently identified the viral protein Vpu to be a key determinant responsible for HIV-1 targeting and degradation of interferon regulatory factor 3 (IRF3), a central transcription factor driving host cell innate immunity. IRF3 plays a major role in pathogen recognition receptor (PRR) signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Here we interrogate the cellular responses to target cell infection with Vpu-deficient HIV-1 strains. Remarkably, in the absence of Vpu, HIV-1 triggers a potent intracellular innate immune response that suppresses infection. Thus, HIV-1 can be recognized by PRRs within the host cell to trigger an innate immune response, and this response is unmasked only in the absence of Vpu. Vpu modulation of IRF3 therefore prevents virus induction of specific innate defense programs that could otherwise limit infection. These observations show that HIV-1 can indeed be recognized as a pathogen in infected cells and provide a novel and effective platform for defining the native innate immune programs of target cells of HIV-1 infection.