Published in

Wiley, Global Change Biology, 4(11), p. 525-536, 2005

DOI: 10.1111/j.1365-2486.2005.00926.x

Links

Tools

Export citation

Search in Google Scholar

The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses

Journal article published in 2005 by Robert D. Hollister ORCID, Patrick J. Webber, Craig E. Tweedie
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Global climate models predict continued rapid warming for most of the Arctic throughout the next century. To further understand the response of arctic tundra to climate warming, four sites in northern Alaska were warmed for five to seven consecutive growing seasons using open-top chambers. Sites were located in dry heath and wet meadow communities near Barrow (71°18′N, 156°40′W) and Atqasuk (70°29′N, 157°25′W). Change in plant community composition was measured using a point frame method. During the period of observation, species richness declined in control plots by up to 2.7 species plot−1. Responses to warming varied by site but similar trends included increased canopy height (−0.1 to 2.3 cm) and relative cover of standing dead plant matter (1.5–6.0%) and graminoids (1.8–5.8%) and decreased species diversity (0.1–1.7 species plot−1) and relative cover of lichens (0.2–9.1%) and bryophytes (1.4–4.6%) (parentheses enclose the range of average values for the sites). The response to warming was separated into an initial short-term response assessed after two growing seasons of warming and a secondary longer-term response assessed after an additional three to five growing seasons of warming. The initial responses to warming were similar in the four sites, while the secondary responses varied by site. The response to warming was greater at Barrow than Atqasuk because of a greater initial response at Barrow. However, the long-term response to warming was projected to be greater at Atqasuk because of a greater secondary response at Atqasuk. These findings show that predictions of vegetation change due to climate warming based on manipulative experiments will differ depending on both the duration and plant community on which the study focuses.