Published in

American Geophysical Union, Geophysical Research Letters, 2(36), p. n/a-n/a, 2009

DOI: 10.1029/2008gl036193

Links

Tools

Export citation

Search in Google Scholar

A preliminary estimate of the Stokes dissipation of wave energy in the global ocean: STOKES DISSIPATION OF WAVE ENERGY

Journal article published in 2009 by Lakshmi Kantha, Paul Wittmann, Mauro Sclavo, Sandro Carniel ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The turbulent Reynolds stresses in the upper layers of the ocean interact with the vertical shear of the Stokes drift velocity of the wave field to extract energy from the surface waves. The resulting rate of dissipation of wind waves in the global ocean is about 2.5 TW on the average but can reach values as high as 3.7 TW, making it as important as the dissipation of wave energy in the surf zones around the ocean margins. More importantly, the effect of Stokes dissipation is felt throughout the mixed layer. It also contributes to Langmuir circulations. Unfortunately, this wave dissipation mechanism has hitherto been largely ignored. In this note, we present a preliminary estimate of the Stokes dissipation rate in the global oceans based on the results of the WAVEWATCH III model for the year 2007 to point out its potential importance. Seasonal and regional variations are also described.