Published in

American Institute of Physics, Journal of Applied Physics, 5(106), p. 053710

DOI: 10.1063/1.3212984

Links

Tools

Export citation

Search in Google Scholar

Controllable spin-dependent transport in armchair graphene nanoribbon structures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Using the nonequilibrium Green’s functions formalism in a tight binding model, the spin-dependent transport in armchair graphene nanoribbons controlled by a ferromagnetic gate is investigated. Beyond the oscillatory behavior of conductance and spin polarization with respect to the barrier height, which can be tuned by the gate voltage, we especially analyze the effects of width-dependent band gap and of the nature of contacts. The oscillation of spin polarization in graphene nanoribbons with a large band gap is strong in comparison with that in infinite graphene sheets. Very high spin polarization (close to 100%) is observed in normal-conductor/graphene/normal-conductor junctions. Moreover, we find that the difference in electronic structure between normal conductor and graphene generates confined states which have a strong influence on the transport properties of the device. This study suggests that the device should be carefully designed to obtain a high controllability of spin-polarized current.