Published in

Springer, Nano Research, 12(8), p. 4024-4037, 2015

DOI: 10.1007/s12274-015-0904-x

Links

Tools

Export citation

Search in Google Scholar

Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Platinum nanoparticles (NPs) are reported to mimic various antioxidant enzymes and thus may produce a positive biological effect by reducing reactive oxygen species (ROS) levels. In this manuscript, we report Pt NPs as an enzyme mimic of ferroxidase by depositing platinum nanodots on gold nanorods (Au@Pt NDRs). Au@Pt NDRs show pH-dependent ferroxidase-like activity and have higher activity at neutral pH values. Cytotoxicity results with human cell lines (lung adenocarcinoma A549 and normal bronchial epithelial cell line HBE) show that Au@Pt NDRs are taken up into cells via endocytosis and translocate into the endosome/lysosome. Au@Pt NDRs have good biocompatibility at NDR particle concentrations lower than 0.15 nΜ. However, in the presence of H2O2, lysosomelocated NDRs exhibit peroxidase-like activity and therefore increase cytotoxicity. In the presence of Fe2+, the ferroxidase-like activity of the NDRs protects cells from oxidative stress by consuming H2O2. Thorough consideration should be given to this behavior when employing Au@Pt NDRs in biological systems.[Figure not available: see fulltext.] © 2015 Tsinghua University Press and Springer-Verlag Berlin Heidelberg