Published in

American Chemical Society, Environmental Science and Technology, 22(42), p. 8330-8338, 2008

DOI: 10.1021/es801169k

Links

Tools

Export citation

Search in Google Scholar

Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An occurrence study was conducted to measure five iodo-acids (iodoacetic acid, bromoiodoacetic acid, (Z)-3-bromo-3-iodo-propenoic acid, (E)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3-methylbutenedioic acid) and two iodo-trihalomethanes (iodo-THMs), (dichloroiodomethane and bromochloroiodomethane) in chloraminated and chlorinated drinking waters from 23 cities in the United States and Canada. Since iodoacetic acid was previouslyfound to be genotoxic in mammalian cells, the iodo-acids and iodo-THMs were analyzed for toxicity. A gas chromatography (GC)/negative chemical ionization-mass spectrometry (MS) method was developed to measure the iodo-acids; iodo-THMs were measured using GC/high resolution electron ionization-MS with isotope dilution. The iodo-acids and iodo-THMs were found in waters from most plants, at maximum levels of 1.7 microg/L (iodoacetic acid), 1.4 microg/L (bromoiodoacetic acid), 0.50 microg/L ((Z)-3-bromo-3-iodopropenoic acid), 0.28 microg/L ((E)-3-bromo-3-iodopropenoic acid), 0.58 microg/L ((E)-2-iodo-3-methylbutenedioic acid), 10.2 microg/L (bromochloroiodomethane), and 7.9 microg/L (dichloroiodomethane). Iodo-acids and iodo-THMs were highest at plants with short free chlorine contact times (< 1 min), and were lowest at a chlorine-only plant or at plants with long free chlorine contact times (> 45 min). Iodide levels in source waters ranged from 0.4 to 104.2 microg/L (when detected), but there was not a consistent correlation between bromide and iodide. The rank order for mammalian cell chronic cytotoxicity of the compounds measured in this study, plus other iodinated compounds, was iodoacetic acid > (E)-3-bromo-2-iodopropenoic acid > iodoform > (E)-3-bromo-3-iodo-propenoic acid > (Z)-3-bromo-3-iodo-propenoic acid > diiodoacetic acid > bromoiodoacetic acid > (E)-2-iodo-3-methylbutenedioic acid > bromodiiodomethane > dibromoiodomethane > bromochloroiodomethane approximately chlorodiiodomethane > dichloroiodomethane. With the exception of iodoform, the iodo-THMs were much less cytotoxic than the iodo-acids. Of the 13 compounds analyzed, 7 were genotoxic; their rank order was iodoacetic acid > diiodoacetic acid > chlorodiiodomethane > bromoiodoacetic acid > E-2-iodo-3-methylbutenedioic acid > (E)-3-bromo-3-iodo-propenoic acid > (E)-3-bromo-2-iodopropenoic acid. In general, compounds that contain an iodo-group have enhanced mammalian cell cytotoxicity and genotoxicity as compared to their brominated and chlorinated analogues.