Published in

Springer Verlag, Nano Research

DOI: 10.1007/s12274-015-0971-z

Links

Tools

Export citation

Search in Google Scholar

Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production

Journal article published in 2016 by Bing Wang, Yingde Wang, Yongpeng Lei ORCID, Nan Wu, Yanzi Gou, Cheng Han, Song Xie, Dong Fang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Silicon carbide (SiC) has been considered a promising metal-free photocatalyst due to its unique photoelectrical properties and thermal/chemical stability. However, its performance suffers from the fast recombination of charge carriers. Herein, we report mesoporous SiC nanofibers with in situ embedded graphitic carbon (SiC NFs-Cx) synthesized via a one-step carbothermal reduction between electrospun carbon nanofibers and Si powders. In the absence of a noble metal co-catalyst, the hydrogen evolution efficiency of SiC NFs-Cx is significantly improved under both simulated solar light (180.2 μmol·g–1·h–1) and visible light irradiation (31.0 μmol·g–1·h–1) in high-pH solution. The efficient simultaneous separation of charge carriers plays a critical role in the high photocatalytic activity. The embedded carbon can swiftly transfer the photogenerated electrons and improve light absorption, whereas the additional hydroxyl anions (OH–) in highpH solution can accelerate the trapping of holes. Our results demonstrate that the production of SiC NFs-Cx, which contains exclusively earth-abundant elements, scaled up, and is environmentally friendly, has great potential for practical applications. This work may provide a new pathway for designing stable, lowcost, high efficiency, and co-catalyst-free photocatalysts.