Links

Tools

Export citation

Search in Google Scholar

Extraction of Carbon Dioxide From the Atmosphere Through Engineered Chemical Sinkage

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We present the case for CO{sub 2} extraction from air as a means of sustaining fossil energy use by avoiding climate change. Our concept harnesses atmospheric circulation to transport CO{sub 2} to sites where the CO{sub 2} is extracted by binding it to an adsorbent. As a proof of concept, we show that an aqueous Ca(OH){sub 2} solution efficiently converts CO{sub 2} to a CaCO{sub 3} solid that can be heated to obtain pure CO{sub 2} and recover the CaO. Even with recycling costs, CO{sub 2} extraction from air blown by wind through a 1 m{sup 2} aperture could eliminate the greenhouse gas impact of 100 kW gasoline engine, making it more favorable than renewable sources as solar, wind, or bio-mass. In addition it collects CO{sub 2} from dispersed sources, preserves the energy infrastructure, can yield negative emissions, and provide free CO{sub 2} transport to sequestration sites. We report economic and scaling arguments, atmospheric simulations and experiments that support pursuing air-extraction as an advanced CO{sub 2} capture technology. This method could process today's world output of CO{sub 2} with many collection units with a net area of 10{sup 3}-10{sup 4} km{sup 2} at costs of {approx} 5{cents}/liter of gasoline, a manageable scale for this massive undertaking.