Published in

Elsevier, Surface Science, 3-4(606), p. 554-558

DOI: 10.1016/j.susc.2011.11.029

Links

Tools

Export citation

Search in Google Scholar

Unintentional F doping of SrTiO3(001) etched in HF acid-structure and electronic properties

Journal article published in 2012 by Scott A. Chambers, Timothy C. Droubay ORCID, Cigdem Capan, Guangyuan Y. Sun
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We show that the HF acid etch commonly used to prepare SrTiO3(001) for heteroepitaxial growth of complex oxides results in a non-negligible level of F doping within the terminal surface layer of TiO2. Using a combination of x-ray photoelectron spectroscopy and scanned angle x-ray photoelectron diffraction, we determine that on average â 13% of the O anions in the surface layer are replaced by F, but that F does not occupy O sites in deeper layers. Despite this perturbation to the surface, the Fermi level remains unpinned, and the surface-state density, which determines the amount of band bending, is driven by factors other than F doping. The presence of F at the STO surface is expected to result in lower electron mobilities at complex oxide heterojunctions involving STO substrates because of impurity scattering. Unintentional F doping can be substantially reduced by replacing the HF-etch step with a boil in deionized water, which in conjunction with an oxygen tube furnace anneal, leaves the surface flat and TiO2 terminated.