Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep20354

Links

Tools

Export citation

Search in Google Scholar

Role of the Pinning Points in Epitaxial Graphene Moiré Superstructures on the Pt(111) Surface

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe intrinsic atomic mechanisms responsible for electronic doping of epitaxial graphene Moirés on transition metal surfaces is still an open issue. To better understand this process we have carried out a first-principles full characterization of the most representative Moiré superstructures observed on the Gr/Pt(111) system and confronted the results with atomically resolved scanning tunneling microscopy experiments. We find that for all reported Moirés the system relaxes inducing a non-negligible atomic corrugation both, at the graphene and at the outermost platinum layer. Interestingly, a mirror “anti-Moiré” reconstruction appears at the substrate, giving rise to the appearance of pinning-points. We show that these points are responsible for the development of the superstructure, while charge from the Pt substrate is injected into the graphene, inducing a local n-doping, mostly localized at these specific pinning-point positions.