Published in

European Geosciences Union, Climate of the Past, 2(8), p. 683-700, 2012

DOI: 10.5194/cp-8-683-2012

European Geosciences Union, Climate of the Past Discussions, 5(7), p. 3049-3089

DOI: 10.5194/cpd-7-3049-2011

Links

Tools

Export citation

Search in Google Scholar

A multi-proxy perspective on millennium-long climate variability in the Southern Pyrenees

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. This paper reviews multi-proxy paleoclimatic reconstructions with robust age-control derived from lacustrine, dendrochronological and geomorphological records and characterizes the main environmental changes that occurred in the Southern Pyrenees during the last millennium. Warmer and relatively arid conditions prevailed during the Medieval Climate Anomaly (MCA, ca. 900–1300 AD), with a significant development of xerophytes and Mediterranean vegetation and limited deciduous tree formations (mesophytes). The Little Ice Age (LIA, 1300–1800 AD) was generally colder and moister, with an expansion of deciduous taxa and cold-adapted montane conifers. Two major phases occurred within this period: (i) a transition MCA–LIA, characterized by fluctuating, moist conditions and relatively cold temperatures (ca. 1300 and 1600 AD); and (ii) a second period, characterized by the coldest and most humid conditions, coinciding with maximum (recent) glacier advances (ca. 1600–1800 AD). Glaciers retreated after the LIA when warmer and more arid conditions dominated, interrupted by a short-living cooling episode during the late 19th to early 20th centuries. Some records suggest a response to solar activity with colder and slightly moister conditions during solar minima. Centennial-scale hydrological fluctuations are in phase with reconstructions of NAO variability, which appears to be one of the main climate mechanisms influencing rainfall variations in the region during the last millennium.