Published in

Quantum Dots, Particles, and Nanoclusters VI

DOI: 10.1117/12.810192

Links

Tools

Export citation

Search in Google Scholar

Quantum dot insertions in VCSELs from 840 to 1300 nm: Growth, characterization, and device performance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Presently VCSELs covering a significant spectral range (840-1300 nm) can be produced based on quantum dot (QD) active elements. Herein we report progress on selected QD based vertical-cavity surface-emitting lasers (VCSELs) suitable for high-speed operation. An open eye diagram at 20 Gb/s with error-free transmission (a bit-error-rate < 10-15) is achieved at 850 nm. The 850 nm QD VCSELs also achieve error-free 20 Gb/s single mode transmission operation through multimode fiber without the use of optical isolation. Our 980 nm-range QD VCSELs achieve error free transmission at 25 Gb/s at up to 150°C. These 980 nm devices operate in a temperature range of 25-85°C without current or modulation voltage adjustment. We anticipate that the primary application areas of QD VCSELs are those that require degradation-robust operation under extremely high current densities. Temperature stability at ultrahigh current densities, a forte of QDs, is needed for ultrahigh-speed (> 40 Gb/s) current-modulated VCSELs for a new generation of local and storage area networks. Finally we discuss aspects of QD vertical extended-cavity surface emitting lasers with ultra high power density per emitting surface for high power (material processing) and frequency conversion (display) applications.