Published in

Elsevier, Neurobiology of Aging, 4(36), p. 1702-1715

DOI: 10.1016/j.neurobiolaging.2015.01.004

Links

Tools

Export citation

Search in Google Scholar

Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have recently shown that overexpression of the F3/contactin adhesive glycoprotein (also known as Contactin-1) promotes neurogenesis in adult hippocampus, which correlates with improved synaptic plasticity and memory. Because F3/contactin levels physiologically decrease with age, here, we aim at investigating whether its overexpression might counteract the cognitive decline in aged animals. For this we use 20- to 24-month-old TAG/F3 transgenic mice in which F3/contactin overexpression is driven by regulatory sequences from the gene encoding the transient axonal glycoprotein TAG-1 throughout development. We show that aged TAG/F3 mice display improved hippocampal long-term potentiation and memory compared with wild-type littermates. The same mice undergo a decrease of neuronal apoptosis at the hippocampal level, which correlated to a decrease of active caspase-3; by contrast, procaspase-3 and Bax as well as the anti-apoptotic and plasticity-related pathway BDNF/CREB/Bcl-2 were rather increased. Interestingly, amyloid-precursor protein processing was shifted toward sAPPα generation, with a decrease of sAPPβ and amyloid-beta levels. Our data confirm that F3/contactin plays a role in hippocampal synaptic plasticity and memory also in aged mice, suggesting that it acts on molecular pathways related to apoptosis and amyloid-beta production.