Published in

American Chemical Society, Journal of Physical Chemistry C, 45(118), p. 26155-26161, 2014

DOI: 10.1021/jp5081753

Links

Tools

Export citation

Search in Google Scholar

The Nature of the Molybdenum Surface in Iron Molybdate. The Active Phase in Selective Methanol Oxidation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The surface structure of iron molybdate is of great significance since this is the industrial catalyst for the direct selective oxidation of methanol to formaldehyde. There is a debate concerning whether Fe2(MoO4)3 acts as a benign support for segregated MoO3 or if there is an intrinsic property of the surface structure which facilitates its high catalytic efficacy. This study provides new insights into the structure of this catalyst, identifying a bound terminating layer of octahedral Mo units as the active and selective phase. Here we examine whether only 1 monolayer of Mo on iron oxide alone is efficacious for this reaction. For a 1 ML MoOx shell–Fe2O3 core catalyst the Mo remains at the surface under all calcination procedures while exhibiting high selectivity and activity. The work highlights how catalyst surfaces are significantly different from bulk structures and this difference is crucial for catalyst performance.