Published in

Sociedade Brasileira de Pesquisa Odontológica, Brazilian Oral Research, 3(23), p. 255-262, 2009

DOI: 10.1590/s1806-83242009000300006

Links

Tools

Export citation

Search in Google Scholar

A simple method to measure cell viability in proliferation and cytotoxicity assays

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Resazurin dye has been broadly used as indicator of cell viability in several types of assays for evaluation of the biocompatibility of medical and dental materials. Mitochondrial enzymes, as carriers of diaphorase activities, are probably responsible for the transference of electrons from NADPH + H+ to resazurin, which is reduced to resorufin. The level of reduction can be quantified by spectrophotometers since resazurin exhibits an absorption peak at 600 etam and resorufin at 570 etam wavelengths. However, the requirement of a spectrophotometer and specific filters for the quantification could be a barrier to many laboratories. Digital cameras containing red, green and blue filters, which allow the capture of red (600 to 700 etam) and green (500 to 600 etam) light wavelengths in ranges bordering on resazurin and resorufin absorption bands, could be used as an alternative method for the assessment of resazurin and resorufin concentrations. Thus, our aim was to develop a simple, cheap and precise method based on a digital CCD camera to measure the reduction of resazurin. We compared the capability of the CCD-based method to distinguish different concentrations of L929 and normal Human buccal fibroblast cell lines with that of a conventional microplate reader. The correlation was analyzed through the Pearson coefficient. The results showed a strong association between the measurements of the method developed here and those made with the microplate reader (r(2) = 0.996; p < 0.01) and with the cellular concentrations (r(2) = 0.965; p < 0.01). We concluded that the developed Colorimetric Quantification System based on CCD Images allowed rapid assessment of the cultured cell concentrations with simple equipment at a reduced cost.