Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1161), 2009

DOI: 10.1557/proc-1161-i01-06

Links

Tools

Export citation

Search in Google Scholar

Development of Novel Multiferroic Composites Based on BaTiO3 and Hexagonal Ferrites

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA new multiferroic composite ceramics with the general formula (x)Ba(Sr)Fe12O19-(1-x)BaTiO3 (x=0.1, 0.5) was synthesized via a simple solid-state reaction technique. Crystal structure analysis performed for both materials revealed the presence of two crystalline phases pertinent to the initial composite components. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to testify the crystallinity, microstructure, and local magnetoelectric interactions between ferroelectric and ferromagnetic grains. Magnetic measurements revealed that the saturation magnetization is proportional to the volume fraction of ferrite phase. Dielectric studies demonstrated strong frequency relaxation due to space charge polarization and high conductivity loss making macroscopic magnetoelectric measurements difficult. Novel nanoscale magnetoelectric effect observed by AFM is discussed.