Published in

Springer Verlag, Journal of Solid State Electrochemistry, 5(17), p. 1421-1427

DOI: 10.1007/s10008-013-2011-9

Links

Tools

Export citation

Search in Google Scholar

Application of 7Li NMR to characterize the evolution of intercalated and non-intercalated lithium in LiFePO4-based materials for Li-ion batteries

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Different synthesis batches of LiFePO4/C materials were prepared, and their electrochemical properties as positive cathodes for lithium-ion batteries were evaluated. Using standard solid-state NMR conditions, such as a 7-mm magic-angle-spinning probe performing at low spinning rates, information on both intercalated and non-intercalated (stored on the grain boundaries) lithium was obtained. A sharp signal assigned to non-intercalated lithium could be observed by diluting the active material in silica. Correlations could be, thus, obtained between the amount of each type of lithium and the electrochemical history and state of the material, revealing that the relative amount of surface lithium in a pristine LiFePO4/C material is rather constant and cannot be used as a criterion for its further specification. However, a drastic increase of this surface lithium was observed in the cathode materials of out-of-order batteries. As the cathode material recovered from the batteries after electrochemical testing was carefully washed before analysis, we can conclude that the non-intercalated lithium is strongly bound to the active material probably inside the so-called solid electrolyte interface layer at the surfaces of LiFePO4 particles. This work illustrates that solid-state lithium NMR can allow rapid characterization and testing of LiFePO4/C cathode materials.