Published in

Cell Press, Neuron, 5(75), p. 799-809, 2012

DOI: 10.1016/j.neuron.2012.06.027

Links

Tools

Export citation

Search in Google Scholar

Atoh1 Governs the Migration of Postmitotic Neurons that Shape Respiratory Effectiveness at Birth and Chemoresponsiveness in Adulthood

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hindbrain neuronal networks serving respiratory, proprioceptive, and arousal functions share a developmental requirement for the bHLH transcription factor Atoh1. Loss of Atoh1 in mice results in respiratory failure and neonatal lethality; however, the neuronal identity and mechanism by which Atoh1-dependent cells sustain newborn breathing remains unknown. We uncovered that selective loss of Atoh1 from the post-mitotic retrotrapezoid nucleus (RTN) neurons results in severely impaired inspiratory rhythm and pronounced neonatal death. Mice that escape neonatal death develop abnormal chemoresponsiveness as adults. Interestingly, the expression of Atoh1 in the RTN neurons is not required for their specification or maintenance, but is important for their proper localization and to establish essential connections with the preBötzinger Complex (preBötC). These results provide insights into the genetic regulation of neonatal breathing and shed light on the labile sites that might contribute to sudden death in newborn infants and altered chemoresponsiveness in adults.