Published in

Proceedings. 2004 IEEE International Conference on Field- Programmable Technology (IEEE Cat. No.04EX921)

DOI: 10.1109/fpt.2004.1393322

Links

Tools

Export citation

Search in Google Scholar

FPGA implementation of spiking neural networks - An initial step towards building tangible collaborative autonomous agents

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work contains the results of an initial study into the FPGA implementation of a spiking neural network. This work was undertaken as a task in a project that aims to design and develop a new kind of tangible collaborative autonomous agent. The project intends to exploit/investigate methods for engineering emergent collective behaviour in large societies of actual miniature agents that can learn and evolve. Such multi-agent systems could be used to detect and collectively repair faults in a variety of applications where it is difficult for humans to gain access, such as fluidic environments found in critical components of material/industrial systems. The initial achievement of implementation of a spiking neural network on a FPGA hardware platform and results of a robotic wall following task are discussed by comparison with software driven robots and simulations.