Published in

Taylor and Francis Group, Free Radical Research, 3(35), p. 311-318, 2001

DOI: 10.1080/10715760100300841

Links

Tools

Export citation

Search in Google Scholar

Protection of U937 cells from free radical damage by the macrophage synthesized antioxidant 7,8-dihydroneopterin

Journal article published in 2001 by Steven P. Gieseg, Jacqueline Whybrow, Dylan Glubb ORCID, Chris Rait
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Interferon-gamma stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however, no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.