Published in

American Institute of Physics, Journal of Applied Physics, 7(97), p. 074303, 2005

DOI: 10.1063/1.1870102

Links

Tools

Export citation

Search in Google Scholar

Continuum field model of defect formation in carbon nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

While considerable efforts in the form of numerical atomistic simulations have been expended to understand the mechanics of defect formation under applied strain, analogous analytical efforts have been rather few. In this work, based on the physics at the nanoscale, defect nucleation in single-walled carbon nanotubes is studied using both classical continuum field theory as well as gauge field theory of defects. Despite the inherent continuum assumption in our models, reasonably close qualitative and quantitative agreement with existing atomistic simulations is obtained. The latter lends credence to the belief that continuum formulations, with correct incorporation of the relevant physics, can be a powerful and yet simple tool for exploring nanoscale phenomena in carbon nanotubes. The results are more sensitive to chirality than to the size of the nanotubes. © 2005 American Institute of Physics.