Published in

American Institute of Physics, Applied Physics Letters, 23(98), p. 232506

DOI: 10.1063/1.3597224

Links

Tools

Export citation

Search in Google Scholar

Enhanced magnetoresistance in naturally oxidized MgO-based magnetic tunnel junctions with ferromagnetic CoFe/CoFeB bilayers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Three-dimensional elemental distributions in magnetic tunnel junctions containing naturally oxidized MgO tunnel barriers are characterized using atom-probe tomography. Replacing the CoFeB free layer (reference layer) with a CoFe/CoFeB (CoFeB/CoFe) bilayer increases the magnetoresistance from 105% to 192% and decreases the resistance-area product from 14.5 to 3.4 Ω μm2. The CoFe/CoFeB bilayer improves the compositional uniformity within the free layer by nucleating CoFeB crystals across the entire layer, resulting in a homogeneous barrier/free layer interface. In contrast, the simple CoFeB free layer partially crystallizes with composition differences from grain to grain (5–30 nm), degrading the tunnel junction performance.