Published in

Elsevier, Journal of Chromatography A, 1-2(905), p. 351-357, 2001

DOI: 10.1016/s0021-9673(00)00963-8

Links

Tools

Export citation

Search in Google Scholar

Effect of pH on the oxidation of paralytic shellfish poisoning toxins for analysis by liquid chromatography

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of pH on the oxidation of individual PSP toxins using both periodate and peroxide oxidations was studied. It was found that the optimum pH for individual toxins varied considerably. For periodate oxidations, pH 8.2 produced the maximum yield of fluorescent products for neosaxitoxin and GTX1/GTX4 while the non-hydroxylated toxins (saxitoxin, GTX2/GTX3, decarbamoyl saxitoxin, GTX5) showed optimum pHs from about pH 10-11.5. Neosaxitoxin and GTX1/GTX4 did not produce significant fluorescent oxidation products with peroxide oxidation at any of the pHs studied (pH 8.2-12.8). The non-hydroxylated toxins all showed optimum pHs above pH 12 with peroxide oxidation. Yields of fluorescent products of these toxins decreased substantially at pHs below pH 12. Neosaxitoxin and GTX1/GTX4 each produced three product peaks at pH 8.2 with periodate oxidation. There was no pH where these toxins produced predominantly a single oxidation product. Decarbamoyl saxitoxin always produced two oxidation products with both oxidation reactions at the pHs studied. However, the relative yields of the products changed with pH. At low pH the second eluting product predominated, while at higher pH values the first eluting product predominated. This pattern was observed for both oxidation reactions. The other non-hydroxylated toxins produced mainly single unique products with both oxidation reactions over the pH range studied. No single pH was found optimum for the oxidation of both hydroxylated and non-hydroxylated toxins without a significant compromise in yield of oxidation products. This has implications for the post column oxidation liquid chromatographic methods, since small changes in pH of the post column oxidant can both positively and negatively affect the yields of oxidation products of toxin mixtures leading to increased error in the subsequent quantitation of these compounds.