Published in

Wiley, Molecular Microbiology, 4(43), p. 895-905, 2002

DOI: 10.1046/j.1365-2958.2002.02805.x

Links

Tools

Export citation

Search in Google Scholar

Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The shdA gene is the only determinant known to be required for persistence of Salmonella enterica serotype Typhimurium (S. Typhimurium) in the murine caecum and for efficient and prolonged shedding of the organism with the faeces. To study the biological activity of the ShdA protein, we examined its expression and binding activity. ShdA was not detected with anti-ShdA antiserum in S. Typhimurium strain ATCC14028 grown in vitro, suggesting that this protein is not expressed under standard conditions of bacterial cultivation in the laboratory. However, in mice infected with S. Typhimurium, an immunofluorescence signal detected with anti-ShdA antiserum co-localized with that generated by anti-O4 antiserum in thin sections from the caecum. Expression of the cloned shdA gene from the T7 promoter in vitro resulted in detection of ShdA in the outer membrane of S. Typhimurium and in binding of fibronectin to the bacterial surface. Binding of purified glutathione-S-transferase (GST)-ShdA fusion protein to fibronectin was dose dependent and could be partially inhibited by preincubation with antifibronectin antibodies. GST-ShdA bound to connective tissue and the basement membrane in thin sections from the murine caecum in situ. A similar labelling pattern was produced when thin sections of the murine caecum were stained with antifibronectin antiserum. Collectively, these data demonstrate that ShdA is a surface-localized, fibronectin-binding protein whose expression is induced in vivo in the murine caecum, a tissue in which a cognate receptor of this outer membrane protein is expressed.