Published in

American Geophysical Union, Geophysical Research Letters, 6(41), p. 1854-1861

DOI: 10.1002/2014gl059389

Links

Tools

Export citation

Search in Google Scholar

Resonant scattering of energetic electrons by unusual low-frequency hiss

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100-2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20-200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50-200 keV electrons and produces more pronounced pancake distributions of ~50-100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50-400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.