Published in

American Meteorological Society, Journal of Hydrometeorology, 5(6), p. 670-680, 2005

DOI: 10.1175/jhm445.1

Links

Tools

Export citation

Search in Google Scholar

Weak Land Atmosphere Coupling Strength in HadAM3: The Role of Soil Moisture Variability

Journal article published in 2005 by David M. Lawrence ORCID, Julia M. Slingo
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract A recent model intercomparison, the Global Land–Atmosphere Coupling Experiment (GLACE), showed that there is a wide range of land–atmosphere coupling strengths, or the degree that soil moisture affects the generation of precipitation, amongst current atmospheric general circulation models (AGCMs). Coupling strength in the Hadley Centre atmosphere model (HadAM3) is among the weakest of all AGCMs considered in GLACE. Reasons for the weak HadAM3 coupling strength are sought here. In particular, the impact of pervasive saturated soil conditions and low soil moisture variability on coupling strength is assessed. It is found that when the soil model is modified to reduce the occurrence of soil moisture saturation and to encourage soil moisture variability, the soil moisture–precipitation feedback remains weak, even though the relationship between soil moisture and evaporation is strengthened. Composites of the diurnal cycle, constructed relative to soil moisture, indicate that the model can simulate key differences in boundary layer development over wet versus dry soils. In particular, the influence of wet or dry soil on the diurnal cycles of Bowen ratio, boundary layer height, and total heat flux are largely consistent with the observed influence of soil moisture on these properties. However, despite what appears to be successful simulation of these key aspects of the indirect soil moisture–precipitation feedback, the model does not capture observed differences for wet and dry soils in the daily accumulation of boundary layer moist static energy, a crucial feature of the feedback mechanism.