Published in

American Meteorological Society, Monthly Weather Review, 10(137), p. 3388-3406, 2009

DOI: 10.1175/2009mwr2879.1

Links

Tools

Export citation

Search in Google Scholar

Initial Condition Sensitivity of Western Pacific Extratropical Transitions Determined Using Ensemble-Based Sensitivity Analysis

Journal article published in 2009 by Ryan D. Torn, Gregory J. Hakim ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract An ensemble Kalman filter based on the Weather Research and Forecasting (WRF) model is used to generate ensemble analyses and forecasts for the extratropical transition (ET) events associated with Typhoons Tokage (2004) and Nabi (2005). Ensemble sensitivity analysis is then used to evaluate the relationship between forecast errors and initial condition errors at the onset of transition, and to objectively determine the observations having the largest impact on forecasts of these storms. Observations from rawinsondes, surface stations, aircraft, cloud winds, and cyclone best-track position are assimilated every 6 h for a period before, during, and after transition. Ensemble forecasts initialized at the onset of transition exhibit skill similar to the operational Global Forecast System (GFS) forecast and to a WRF forecast initialized from the GFS analysis. WRF ensemble forecasts of Tokage (Nabi) are characterized by relatively large (small) ensemble variance and greater (smaller) sensitivity to the initial conditions. In both cases, the 48-h forecast of cyclone minimum SLP and the RMS forecast error in SLP are most sensitive to the tropical cyclone position and to midlatitude troughs that interact with the tropical cyclone during ET. Diagnostic perturbations added to the initial conditions based on ensemble sensitivity reduce the error in the storm minimum SLP forecast by 50%. Observation impact calculations indicate that assimilating approximately 40 observations in regions of greatest initial condition sensitivity produces a large, statistically significant impact on the 48-h cyclone minimum SLP forecast. For the Tokage forecast, assimilating the single highest impact observation, an upper-tropospheric zonal wind observation from a Mongolian rawinsonde, yields 48-h forecast perturbations in excess of 10 hPa and 60 m in SLP and 500-hPa height, respectively.