Published in

American Chemical Society, Journal of the American Chemical Society, 2(126), p. 563-567, 2003

DOI: 10.1021/ja0372715

Links

Tools

Export citation

Search in Google Scholar

One-Step Multifunctionalization of Random Copolymers via Self-Assembly

Journal article published in 2004 by Joel M. Pollino, Ludger P. Stubbs, Marcus Weck ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel methodology for random copolymer functionalization based on a noncovalent, one-step, multifunctionalization strategy has been developed. Random copolymers possessing both palladated-pincer complexes and diaminopyridine moieties (hydrogen-bonding entities) have been synthesized using ring-opening metathesis polymerization. Noncovalent functionalization of the resultant copolymers is accomplished via (1) directed self-assembly, (2) multistep self-assembly, and (3) one-step orthogonal self-assembly. This system shows complete specificity of each recognition motif for its complementary unit, with no observable changes in the association constants regardless of the degree of functionalization.