Published in

American Astronomical Society, Astrophysical Journal Letters, 1(758), p. L20, 2012

DOI: 10.1088/2041-8205/758/1/l20

Links

Tools

Export citation

Search in Google Scholar

On a possible explanation of the long-term decrease in sunspot field strength

Journal article published in 2012 by Yury A. Nagovitsyn, Alexei A. Pevtsov ORCID, William C. Livingston
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recent studies revealed a controversy in long-term variations in sunspot field strengths. On one hand, the sunspot field strengths computed by averaging both large and small sunspots and pores show a gradual decrease over the declining phase of solar Cycle 23 and the rising phase of Cycle 24. On the other hand, the strongest sunspot field strengths demonstrate only solar cycle variations with no long-term decline. Here, we investigate the field strength and area properties of sunspots in an attempt to reconcile the presence of both tendencies in recent sunspot field strength measurements. First, we analyze the data set from Penn and Livingston, and we show that in addition to the previously reported long-term decline, the data show the solar cycle variation when only sunspots with the strongest magnetic fields are included. Next, we investigate the variations in the number of sunspots of different sizes, and we find a negative correlation between the numbers of small and large sunspots. Finally, we show that during the period of 1998-2011, the number of large sunspots gradually decreased, while the number of small sunspots steadily increased. We suggest that this change in the fraction of small and large sunspots (perhaps, due to changes in the solar dynamo) can explain the gradual decline in average sunspot field strength as observed by Penn and Livingston.