Published in

Spintronics

DOI: 10.1117/12.797405

Links

Tools

Export citation

Search in Google Scholar

Single domain to vortex state transition in multilayered cobalt/copper nanowires

Journal article published in 2008 by Jared Wong, Peter Greene, Randy K. Dumas, Kai Liu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Multilayered magnetic nanowires provide ideal platforms for nanomagnetism and spin-transport studies. They exhibit complex magnetization reversal behaviors as dimensions of the magnetic components are varied, which are difficult to probe since the magnetic entities are buried inside the nanowires. We have captured magnetic and magnetoresistance "fingerprints" of Co nanodiscs in Co/Cu multilayered nanowires as they undergo a single domain to vortex state transition, using a first-order reversal curve (FORC) method. The Co/Cu multilayered nanowires have been synthesized by pulsed electrodeposition into nanoporous polycarbonate membranes. In 50 nm diameter nanowires of [Co(5nm)/Cu(8nm)]400, a 10% magnetoresistance effect is observed at 300 K. In 200 nm diameter nanowires, the magnetic configurations can be tuned by adjusting the Co nanodisc aspect ratio. The thinnest nanodiscs exhibit single domain behavior. The thicker ones exhibit vortex states, where the nucleation and annihilation of the vortices are manifested as butterfly-like features in the FORC distributions. The magnetoresistance effect shows different characteristics, which correspond to the different magnetic configurations of the Co nanodiscs.