Published in

American Geophysical Union, Geophysical Research Letters, 21(36), 2009

DOI: 10.1029/2009gl040334

Links

Tools

Export citation

Search in Google Scholar

Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia

Journal article published in 2009 by WenJu Cai, Tim Cowan ORCID, Peter Briggs ORCID, Michael Raupach
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Over the past decade the southern catchments of the Murray Darling Basin (MDB), responsible for much of Australia's agricultural output, have experienced a severe drought (termed the “Big Dry”) with record high temperatures and record low inflow. We find that during the Big Dry the sensitivity of soil moisture to rainfall decline is over 80% higher than during the World War II drought from 1937–1945. A relationship exists between soil moisture and temperature independent of rainfall, particularly in austral spring and summer. Annually, a rise of 1°C leads to a 9% reduction in soil moisture over the southern MDB, contributing to the recent high sensitivity. Since 1950, the impact from rising temperature contributes to 45% of the total soil moisture reduction. In a warming climate, as the same process also leads to an inflow reduction, the reduced water availability can only be mitigated by increased rainfall. Other implications for future climate change are discussed.