Published in

Wiley, FEBS Letters, 1-3(536), p. 45-50, 2003

DOI: 10.1016/s0014-5793(03)00009-7

Links

Tools

Export citation

Search in Google Scholar

Impaired voltage-gated K+channel expression in brain during experimental cancer cachexia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cancer-induced cachexia affects most advanced cancer patients. It is characterized by anorexia, profound metabolic dysfunctions, and severe neurological disorders. Here we show that voltage-gated potassium channel (Kv) expression is impaired in the brain of tumor-bearing animals. Expression of both delayed rectifier (Kv1.1, Kv1.2, Kv1.3, Kv1.5, Kv1.6, Kv2.1, Kv3.1, Kv4.2) and A-type potassium channels (Kv1.4, Kv3.3, Kv3.4) was greatly down-regulated in brain from animals bearing a Yoshida AH-130 ascites hepatoma. The possible compensatory mechanisms (Kv1.4/Kv4.2), expression of redundant genes (Kv3.1/Kv3.3) and heteromultimeric channel formation (Kv2.1/Kv9.3) were also affected. The high circulating levels of TNFalpha and the reduced expression of the anti-apoptotic protein Bcl-XL found in the brain of tumor-bearing animals indicate that this response could be mediated by an increase in brain cell death due to apoptosis. The results suggest that brain function is impaired during cancer cachexia, and may account for the cancer-induced anorectic response and other neurological alterations.