Published in

Humana Press, Methods in Molecular Biology, p. 129-139, 2015

DOI: 10.1007/978-1-4939-2694-7_17

Links

Tools

Export citation

Search in Google Scholar

A Well-Based Reverse-Phase Protein Array of Formalin-Fixed Paraffin-Embedded Tissue

Journal article published in 2015 by Joon-Yong Chung ORCID, Stephen M. Hewitt ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biomarkers from tissue-based proteomic studies directly contribute to defining disease states as well as promise to improve early detection or provide for further targeted therapeutics. In the clinical setting, tissue samples are preserved as formalin-fixed paraffin-embedded (FFPE) tissue blocks for histological examination. However, proteomic analysis of FFPE tissue is complicated due to the high level of covalently cross-linked proteins arising from formalin fixation. To address these challenges, we developed well-based reverse-phase protein array (RPPA). This approach is a robust protein isolation methodology (29.44 ± 7.8 μg per 1 mm(3) of FFPE tissue) paired with a novel on electrochemiluminescence detection system. Protein samples derived from FFPE tissue by means of laser capture dissection, with as few as 500 shots, demonstrate measurable signal differences for different proteins. The lysates coated to the array plate, dried up and vacuum-sealed, remain stable up to 2 months at room temperature. This methodology is directly applicable to FFPE tissue and presents the direct opportunity of addressing hypothesis within clinical trials and well-annotated clinical tissue repositories.