Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, 6(16), p. 1753-1770

DOI: 10.1002/2015gc005746

Links

Tools

Export citation

Search in Google Scholar

Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Subduction initiation is a critical link in the plate tectonic cycle. Intra-oceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g. the Neotethys Ocean during the Jurassic, remains a matter of debate. In recent years, extensional detachment faults have been widely documented adjacent to slow-and ultraslow-spreading ridges where they cut across the oceanic lithosphere. These structures are extremely weak due to widespread occurrence of serpentine and talc resulting from hydrothermal alteration, and can therefore effectively localize deformation. Here, we show geochemical, tectonic, and paleomagnetic evidence from the Jurassic ophiolites of Albania and Greece for a subduction zone formed in the western Neotethys parallel to a spreading ridge along an oceanic detachment fault. With 2-D numerical modeling exploring the evolution of a detachment-ridge system experiencing compression, we show that serpentinized detachments are always weaker than spreading ridges. We conclude that, owing to their extreme weakness, oceanic detachments can effectively localize deformation under perpendicular far-field forcing, providing ideal conditions to nucleate new subduction zones parallel and close to (or at) spreading ridges. Direct implication of this, is that resumed magmatic activity in the forearc during subduction initiation can yield widespread accretion of supra-subduction zone ophiolites at or close to the paleoridge. Our new model casts the enigmatic origin of regionally extensive ophiolite belts in a novel geodynamic context, and calls for future research on three-dimensional modeling of subduction initiation and how upper plate extension is associated with that.