Published in

Elsevier, Sedimentary Geology, (247-248), p. 39-57

DOI: 10.1016/j.sedgeo.2011.12.012

Links

Tools

Export citation

Search in Google Scholar

Record of epicontinental platform evolution and volcanic activity during a major rifting phase: The Late Triassic Zamoranos Formation (Betic Cordillera, S Spain)

Journal article published in 2012 by Alberto Pérez-López, Fernando Pérez-Valera ORCID, Annette E. Götz
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The study of the Late Triassic Zamoranos Formation and the comparison to coeval carbonate units provides new insights into the evolution and palaeogeography of carbonate platforms during major rifting phases in the Earth's history. The platform carbonates of the Zamoranos Formation record the last major transgression during the Triassic, and document the initial phase of the CAMP volcanism in the external Zone of the Betic Cordillera. New palynological data from the lower part of the Zamoranos Formation indicate a Middle Norian age. The entire succession is built up by limestones, dolomites, and ferruginous red detrital deposits with volcaniclastic breccias. The carbonates are interpreted as tidal and shallow marine sediments, deposited under arid conditions. The red detrital deposits appear in coastal environments in relation to a volcanic event, which triggered hydrothermal processes in these deposits and started the massive magmatic event associated with the Central Atlantic Magmatic Province (CAMP). The Zamoranos Formation was also recognized in the SW part of the Valencia Triassic and is correlated to the Imón Formation (Iberian Ranges), to the Isábena Formation (Pyrenees) and to other carbonate units of the W Tethys realm (Aquitaine, Tunisian Atlas, West Carpathians). These units indicate that an extensive epicontinental platform developed during the Late Triassic.