Published in

Nature Research, Nature Chemistry, 7(2), p. 552-557, 2010

DOI: 10.1038/nchem.663

Links

Tools

Export citation

Search in Google Scholar

Chiral auxiliary mediated 1,2-cis glycosylations for the solid supported synthesis of a biologically important branched α-glucan

Journal article published in 2010 by Thomas J. Boltje, Jin-Hwan Kim, Jin Park, Geert-Jan Boons ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Solid-phase oligosaccharide synthesis offers the promise of providing libraries of oligosaccharides for glycomics research. A major stumbling block to solid-phase oligosaccharide synthesis has been a lack of general methods for the stereoselective installation of 1,2-cis-glycosides, and intractable mixtures of compounds are obtained if several such glycosides need to be installed. We have prepared on-resin a biologically important glucoside containing multiple 1,2-cis-glycosidic linkages with complete anomeric control by using glycosyl donors having a participating (S)-(phenylthiomethyl)benzyl chiral auxiliary at C2. A branching point could be installed by using 9-fluorenylmethyloxycarbonyl (Fmoc) and allyloxycarbonyl (Alloc) as a versatile set of orthogonal protecting groups. The synthetic strategy made it possible to achieve partial on-resin deprotection of the completed oligosaccharide, thereby increasing the overall efficiency of the synthesis. The combination of classical and auxiliary-mediated neighbouring-group participation for controlling anomeric selectivity is bringing the promise of routine automated solid-supported oligosaccharide synthesis closer.