Published in

Elsevier, Environmental Pollution, (194), p. 105-111, 2014

DOI: 10.1016/j.envpol.2014.07.017

Links

Tools

Export citation

Search in Google Scholar

Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata

Journal article published in 2014 by Jia−Yi Xu, Hong−Bo Li, Shuang Liang, Jun Luo, Lena Q. Ma ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigated the effects of arsenic species on As accumulation, plant growth and rhizospheric changes in As-hyperaccumulator Pteris vittata (PV). PV was grown for 60-d in a soil spiked with 200 mg kg(-1) arsenate (AsV-soil) or arsenite (AsIII-soil). Diffusive gradients in thin-films technique (DGT) were used to monitor As uptake by PV. Interestingly AsIII-soil produced the highest PV biomass at 8.6 g plant(-1), 27% and 46% greater than AsV-soil and the control. Biomass increase was associated with As-induced P uptake by PV. Although AsIII was oxidized to AsV during the experiment, As species impacted As accumulation by PV, with 17.5% more As in AsIII-soil than AsV-soil (36 vs. 31 mg plant(-1)). As concentration in PV roots was 30% higher in AsV-soil whereas As concentration in PV fronds was 7.9% greater in AsIII-soil, suggesting more rapid translocation of AsIII than AsV. These findings were important to understand the mechanisms of As uptake, accumulation and translocation by PV.