Published in

Elsevier, Chemical Physics Letters, (597), p. 20-25, 2014

DOI: 10.1016/j.cplett.2014.02.007

Links

Tools

Export citation

Search in Google Scholar

Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The oxidation of AgNPs at a thin-film gold electrode is simultaneously investigated via digital holography and electrochemistry. The use of holography allows, for the first time, the 3D visualization of the electrochemical interfacial region at a relatively high acquisition rate. It is demonstrated how the coupling of these two techniques provides complementary chemical information. The ensemble response of the oxidation of surface-adsorbed silver nanoparticles to AgCl is monitored electrochemically, whereas this process is difficult to observe optically. Conversely, the subsequent chemical dissolution of individual AgCl nanocrystals can be tracked optically due to the associated decrease in the scattered light intensity.