Published in

Modern Technologies for Landslide Monitoring and Prediction, p. 165-178

DOI: 10.1007/978-3-662-45931-7_9

Links

Tools

Export citation

Search in Google Scholar

Predictability of a Physically Based Model for Rainfall-induced Shallow Landslides: Model Development and Case Studies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A cost-effective physical model (SLope-Infiltration-distributed Equilibrium—SLIDE) has been developed to identify the spatial and temporal occurrences of rainfall-induced landslides, employing a range of remotely sensed and in situ data. The main feature of SLIDE is that it takes into account of some simplified hypotheses on water infiltration and defines a direct relationship between the factor of safety and the rainfall depth on an infinite slope model. This prototype has been applied to two case studies in Indonesia and Honduras during heavy rainfall events brought by typhoon and hurricane, respectively. Simulation results from SLIDE demonstrated good skills in predicting rainfall-induced shallow landslides by assimilating the most important dynamic triggering factor (i.e., rainfall) quantitatively. The model's prediction performance also suggested that SLIDE could serve as a potential tool for the future landslide early-warning system. Despite positive model performance, the SLIDE model is limited by several 165 assumptions including using general parameter calibration rather than in situ tests and neglecting geotechnical information and some of the hydrological processes in deep soil layers. Advantages and limitations of this physically based model are also discussed with respect to future applications of landslide assessment and prediction over large scales.