Published in

American Chemical Society, ACS Chemical Biology, 9(6), p. 900-904, 2011

DOI: 10.1021/cb200206w

Links

Tools

Export citation

Search in Google Scholar

A Small-Molecule Screening Strategy To Identify Suppressors of Statin Myopathy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reduction of plasma low-density lipoprotein levels by HMG-CoA reductase inhibitors, or statins, has had a revolutionary impact in medicine, but muscle-related side effects remain a dose-limiting toxicity in many patients. We describe a chemical epistasis approach that can be useful in refining the mechanism of statin muscle toxicity, as well as in screening for agents that suppress muscle toxicity while preserving the ability of statins to increase the expression of the low-density lipoprotein receptor. Using this approach, we identified one compound that attenuates the muscle side effects in both cellular and animal models of statin toxicity, likely by influencing Rab prenylation. Our proof-of-concept screen lays the foundation for truly high-throughput screens that could help lead to the development of clinically useful adjuvants that can one day be co-administered with statins.