Published in

Institute of Electrical and Electronics Engineers, IEEE Microwave and Wireless Components Letters, 5(19), p. 299-301, 2009

DOI: 10.1109/lmwc.2009.2017595

Links

Tools

Export citation

Search in Google Scholar

Impact of Humidity on Dielectric Charging in RF MEMS Capacitive Switches

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel technique is used to distinguish the charging of the surface from that of the bulk of the dielectrics of different types of RF MEMS capacitive switches under different electric fields and humidity levels. In general, bulk charging dominates in dry air, while surface charging increases linearly with increasing humidity. Under comparable electric fields and humidity levels, switches made of silicon dioxide are less susceptible to surface charging than switches made of silicon nitride. These quantitative results not only underscore the importance of packaging the switches in a dry ambient atmosphere, but also validate the novel technique for evaluating the effectiveness of dielectric preparation and packaging.