Published in

American Chemical Society, Biomacromolecules, 10(11), p. 2660-2666, 2010

DOI: 10.1021/bm1006695

Links

Tools

Export citation

Search in Google Scholar

Poly(methyl vinyl ether-co-maleic acid)-Polyethylene glycol nanocomposites cross-linked in situ with cellulose nanowhiskers

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanocomposites were developed by cross-linking cellulose nanowhiskers with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. Nuclear magnetic resonance (NMR) studies showed cross-linking occurs between the matrix and cellulose nanowhiskers via an esterification reaction. Proton NMR T 2 relaxation experiments provided information on the mobility of the polymer chains within the matrix, which can be related to the structure of the cross-linked nanocomposite. The nanocomposite was found to consist of mobile chain portions between cross-linked junction points and immobilized chain segments near or at those junction points, whose relative fraction increased upon further incorporation of cellulose nanowhiskers. Atomic force microscopy images showed a homogeneous dispersion of nanowhiskers in the matrix even at high nanowhisker content, which can be attributed to cross-linking of the nanowhiskers in the matrix. Relative humidity conditions were found to affect the mechanical properties of the composites negatively while the nanowhiskers content had a positive effect. It is expected that the cross-links between the matrix and the cellulose nanowhiskers trap the nanowhiskers in the cross-linked network, preventing nanowhisker aggregation subsequently producing cellulose nanocomposites with unique mechanical behaviors. The results show that in situ cross-linking of cellulose nanowhiskers with a matrix polymer is a promising route to obtain nanocomposites with well dispersed nanowhiskers, tailored nanostructure, and mechanical performance