Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 7(101), p. 1886-1891, 2004

DOI: 10.1073/pnas.0304403101

Links

Tools

Export citation

Search in Google Scholar

Preferential oxidation of the second phosphatase domain of receptor-like PTP-α revealed by an antibody against oxidized protein tyrosine phosphatases

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protein tyrosine phosphatases (PTPs) constitute a large enzyme family with important biological functions. Inhibition of PTP activity through reversible oxidation of the active-site cysteine residue is emerging as a general, yet poorly characterized, regulatory mechanism. In this study, we describe a generic antibody-based method for detection of oxidation-inactivated PTPs. Previous observations of oxidation of receptor-like PTP (RPTP) α after treatment of cells with H 2 O 2 were confirmed. Platelet-derived growth factor (PDGF)-induced oxidation of endogenous SHP-2, sensitive to treatment with the phosphatidylinositol 3-kinase inhibitor LY294002, was demonstrated. Furthermore, oxidation of RPTPα was shown after UV-irradiation. Interestingly, the catalytically inactive second PTP domain of RPTPα demonstrated higher susceptibility to oxidation. The experiments thus demonstrate previously unrecognized intrinsic differences between PTP domains to susceptibility to oxidation and suggest mechanisms for regulation of RPTPs with tandem PTP domains. The antibody strategy for detection of reversible oxidation is likely to facilitate further studies on regulation of PTPs and might be applicable to analysis of redox regulation of other enzyme families with active-site cysteine residues.