Published in

Volume 1B: 34th Computers and Information in Engineering Conference

DOI: 10.1115/detc2014-34930

Links

Tools

Export citation

Search in Google Scholar

Towards a Cyber-Physical Gaming System for Training in the Construction and Engineering Industry

Proceedings article published in 2014 by Aparajithan Sivanathan, Mohamed Abdel-Wahab, Frederic Bosche ORCID, Theodore Lim
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introducing serious gaming systems (SGS) has the potential to enhance trainee experience and performance across the construction industry and its supply chain, such as mechanical engineering services. SGS as an 'enabler' in architectural engineering has received limited research in its role to assess and enhance the performance of its workforce. In a personnel high-risk environment, improving training standards to eliminate or reduce health and safety risks, in addition to providing an understanding of workers' ergonomics, ensures sustainability of both the project and its workforce. This paper presents an activity tracking and feedback system that captures the physical activity of a construction worker climbing a ladder. Climbing is captured with a 3D motion capture system and processed in real-time to identify potential areas of underperformance. A simple and representative scoring method was established as a reporting method (game statistics) for giving feedback about the correctness of the activity. It can nonetheless be tuned to characterise and adjust to various complexity levels in-line with the required training standards. Furthermore, the motion data and feedback information are fed into a virtual gaming environment enabling the real-time visualisation of the trainee's motion and experiential learning of the performance through visual and audio feedback. The gaming concepts are employed here with multiple purposes, particularly for accelerating and facilitating the learning process of the trainee. In addition to the 3D motion capturing system, this paper outlines and tests a proposed serious cyber-physical gaming system that incorporates wearable technologies that has the potential to support both construction training and practice.