Published in

American Geophysical Union, Geophysical Research Letters, 15(40), p. 3940-3944

DOI: 10.1002/grl.50764

Links

Tools

Export citation

Search in Google Scholar

Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We present ice velocities from a land-terminating transect extending >115km into the western Greenland Ice Sheet during three contrasting melt years (2009-2011) to determine whether enhanced melting accelerates dynamic mass loss. We find no significant correlation between surface melt and annual ice flow. There is however a positive correlation between melt and summer ice displacement, but a negative correlation with winter displacement. This response is consistent with hydro-dynamic coupling; enhanced summer ice flow results from longer periods of increasing surface melting and greater duration ice surface to bed connections, while reduced winter motion is explicable by drainage of high basal water pressure regions by larger more extensive subglacial channels. Despite mean interannual surface melt variability of up to 70%, mean annual ice velocities changed by <7.5%. Increased summer melting thereby preconditions the ice-bed interface for reduced winter motion resulting in limited dynamic sensitivity to interannual variations in surface melting.