Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 10(12), p. 4379-4385, 2012

DOI: 10.5194/acp-12-4379-2012

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 12(11), p. 33173-33189

DOI: 10.5194/acpd-11-33173-2011

Links

Tools

Export citation

Search in Google Scholar

Stable carbon isotope fractionation in the UV photolysis of CFC-11 and CFC-12

Journal article published in 2011 by A. Zuiderweg, J. Kaiser ORCID, J. C. Laube, T. Röckmann, R. Holzinger
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The chlorofluorocarbons CFC-11 (CFCl3) and CFC-12 (CF2Cl2) are stable atmospheric compounds that are produced at the earth's surface, but removed only at high altitudes in the stratosphere by photolytic reactions. Their removal liberates atomic chlorine that then catalytically destroys stratospheric ozone. For such long-lived compounds, isotope effects in the stratospheric removal reactions have a large effect on their global isotope budgets. We have demonstrated a photolytic isotope fractionation for stable carbon isotopes of CFC-11 and CFC-12 in laboratory experiments using broadband UV-C (190–230 nm) light. 13C/12C isotope fractionations (ε) range from (−23.8±0.9) to (−17.7±0.4) ‰ for CFC-11 and (−66.2±3.1) to (−51.0±2.9) ‰ for CFC-12 between 203 and 288 K, a temperature range relevant to conditions in the troposphere and stratosphere. These results suggest that CFCs should become strongly enriched in 13C with decreasing mixing ratio in the stratosphere, similar to what has been recently observed for CFC chlorine isotopes. In conjunction with the strong variations in CFC emissions before and after the Montréal Protocol, the stratospheric enrichments should also lead to a significant temporal increase in the 13C content of the CFCs at the surface over the past decades, which should be recorded in atmospheric air archives such as firn air.