Published in

Emerald, Rapid Prototyping Journal, 1(5), p. 21-26, 1999

DOI: 10.1108/13552549910251846

Links

Tools

Export citation

Search in Google Scholar

Numerical prediction of temperature and density distributions in selective laser sintering processes

Journal article published in 1999 by Gabriel Bugeda, Miguel Cervera ORCID, Guillermo Lombera
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A finite element model has been developed for the 3D simulation of the sintering of a single track during a selective laser sintering process (SLS). The model takes into account both the thermal and the sintering phenomena involved in the process. Owing to the continuous movement of the laser beam the model takes also into account the transient nature of the problem. This is transformed into a pseudo‐static one through a transformation of the coordinates system of the equations. Nevertheless, this transformation introduces a convective term into the heat equations that produces instabilities in the solution. These instabilities have been solved by using a stream upwind Petrov Galerkin (SUPG) strategy together with a shock capturing scheme. Finally, a fixed point strategy is used for the solution of the analysis. The model has been tested through the solution of some examples.